
co

o U-,,

z _o

L_ LL

Wl_C_

Z_F-
WZ_

OAf-.

_- UJ CDZ

O_Z

_u

I _.._I,-
c_rZ

I ,_c,_

,_0_
Z_U_

__ _

./3 / 0_

Object Oriented Programming
Systems (OOPS) and Frame

Representations, an Investigation of
Programming Paradigms

Final Report

,o

,PO

0

_w

u..

o

0_

cl

z,-_!
_ _ -

Ig =

David Auty

SofTech, Inc.

July 31, 1988

Cooperative Agreement NCC 9-16
Research Activity No. AI.9

© ©

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T.E.C.H.N'I'C'A'L R.E.P.O'R'T

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.
The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Ciear Lake and NASA/JSC.

i
_../

Object Oriented Programming
Systems (OOPS) and Frame

Representations, an Investigation of
Programming Paradigms

Final Report

w

m

!

Preface

This research was conducted under the auspices of the Research Institute for

Computing and Information Systems by David Auty of SotTech, Inc. Terry Feagin,

Professor of Computer Science at the University of Houston-Clear Lake served as

the technical representative for RICIS.

Funding has been provided by the Spacecraft Software Division, within the

Mission Support Directorate, NASA/JSC through Cooperative Agreement NCC 9-16

between NASA Johnson Space Center and the University of Houston-Clear Lake.

The technical monitor for this activity was Robert Shuler, Head, Systems Integration

Section, System Development Branch, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

w

FINAL REPORT ON

OBJECT ORIENTED PROGRAMMING SYSTEMS (00PS) AND

FRAME REPRESENTATIONS, AN INVESTIGATION OF PROGRAMMING PARADIGMS

Prepared for:

NASA/JSC/FR4

NASA Cooperative Agreement NCC 9-16

Submitted to:

Dr. Terry Feagin, Principal Investigator

University of Houston, Clear Lake

2700 Bay Area Boulevard

Houston, TX 77058-1096

RICIS Report AI.9

Prepared by:

David Auty, Principal Investigator

SofTech, Inc.

1300 Hercules Drive, Suite I05

Houston, TX 77058-2747

SofTech Document HO-003

Copyright SofTech, Inc., 1988, All Rights Reserved

Final Report

Object Oriented ProgrammingSystems (OOPS)and
FrameRepresentations, An Investigation of Programming Paradigms

July 31, 1988

Prepared for NASA/JSC/FR4
UHCL/RICISReport AI.9
SofTech DocumentHO-003

m

w

INTRODUCTION

The project which led to the development of this report was initiated to

research Object Oriented Programming Systems (00PS) and Frame Representation

systems, their significance and applicability, and their implementation in or

relationship to Ada. "Object Oriented" is currently a very popular conceptual

adjective. Object oriented programming, in particular, is promoted as a

particularly productive approach to programming; an approach which maximizes

opportunities for code reuse and lends itself to the definition of convenient

and well-developed units. Such units are thus expected to be usable in a

variety of situations, beyond the typical highly specific unit development of

other approaches. Frame representation systems share a common heritage and

similar conceptual foundations. Together they represent a quickly emerging

alternative approach to programming.

Our approach is to first define our terms, starting with relevant

concepts and using these to put bounds on what is meant by 00PS and Frames.

From this we have pursued the possibilities of merging OOPS with Ada which

will further elucidate the significant characteristics which make up this

programming approach. Finally, we briefly consider some of the merits and

demerits of OOPS as a way of addressing the applicability of OOPS to various

programming tasks.

Definition of Terms:

As stated by [Seidewitz], there are three essential aspects to Object

Oriented Programming which we address here: encapsulation, inheritance and a

specific form of dynamic binding. A forth term often associated with OOPS is

polymorphism. We will address this and other aspects which relax the rules of

strong type checking under the discussion of dynamic binding. These concepts

will serve to provide a framework within which we can better understand the

notions of OOPS and Frames.

Encapsulation: The first concept of significance within our research was that

of the encapsulation of data and processing which relates to that data. An

object is best understood as such, as an encapsulation of code and data.

Encapsulation is by no means unique to OOPS, but it is essential to the

definition of an 00PS language.

-_ Copyright SofTech, Inc. 1988

The conceptual adjective "object oriented" is centered on the notion of
encapsulation. An object is often defined as being a representation of some
aspect of the "problem space" (the system definition being addressed by a
particular program design) which has some"state of existence" (a set of
persistent data which characterizes the object) and some processing in
reaction to changes within the system. The processing is usually thought of
as being directly influenced by and influencing the object's state (its data).
The power of such encapsulation is that it aids in partitioning the system and
focusing the development effort. The extent that such an approach reduces the
complexity of interaction between program elements is one measure of its merit.

Encapsulation is central to object orientation, but is only one part of
what makes up an object oriented programming system. In fact it is only the
combination of all three of the concepts being presented here which provides
the essential power of OOPS. The encapsulation of data and processing,
providing an object-oriented approach, is needed; a hierarchy of definitions,
as derived from the early work on frame representation systems, is needed;
and as described following, a special form of dynamic binding is needed to
fully realize object oriented programming.

Inheritance: The second subject of discussion addresses a significant common

characteristic of OOPS and Frames, that of inheritance of properties within a

hierarchy of definitions. Both OOPS and Frames share the notion of

characterizing something in terms of its common aspects, which it derives from

a common heritage and which may be shared with many other entities, and those

aspects which distinguish it from others.

For our purposes, this can be recognized as a process of information

modeling. The process is that of the taxonomist, who attempts to properly

categorize and organize items into a hierarchy which collects the pertinent

common aspects into higher levels of definition and pushes distinguishing

detail to the bottom elements. And, for our purposes, this will be considered

the essential aspect of a frame based representation system.

The notion of a frame can be traced back to the originating work of

[Minsky]. In this work, the frame was thought of as a vehicle for capturing a

piece of knowledge necessary for interpreting a given situation. The common

and simple organization of frames is the hierarchy as described above, so that

further up in the hierarchy more common and generalized knowledge is

represented, while further down in the hierarchy, more specialized and

specific knowledge is represented.

_hile the concept of frames has developed and evolved in different

directions since that time, a simplifying approach is to distinguish between

systems which have as their central goal a knowledge data base or knowledge

representation of some kind, and those which have a similar hierarchical

structure but which have as their purpose more than just knowledge

representation. In particular we distinguish between OOPS and Frames in this

way. Frame representation systems allow for the establishment of a knowledge

database, but require an auxiliary processing component, such as an inference

engine for processing to be accomplished. OOPS, on the other hand, has as its

fundamental purpose the organization of computational elements.

-2- HO-OO3

Copyright SofTech, Inc., 1988

w

The focus of our project has been on programming paradigms and methods,

thus the rest of this report will focus on OOPS without further consideration

of Frames. There are interesting variations of frame representation systems,

particularly in the area of attached processing which insures the correctness

or integrity of the knowledge base, but these fall under the restricted model

which separates the knowledge base from the processing components. The notion

of hierarchical definitions serving as a modeling schema for knowledge within

a system is an important contribution of frame representation systems, while

variations have had less of an impact on programming methods.

Dynamic Binding: The last concept of importance then is that of a special

form of dynamic binding. This dynamic binding distinguishes OOPS from other

programming approaches and more general object oriented design approaches.

The "specialized" dynamic binding which characterizes 00PS takes a specific

approach to referencing supporting operations. Supporting operations here

means the operations called within the body of procedure definition. In an

OOPS language, an object which is passed in as a parameter is said to carry

with it its own set of supporting operations. The compilation of an OOPS

operation does not bind the supporting operation references to specific code,

but rather generates a reference to the supporting operation which is

associated with the actual parameter passed in.

Consider, for example, a sort routine. It performs a series of

comparison operations and, for an internal sort, a series of swap operations

(assignments within the array). In traditional languages if one has a sort

procedure an array of one type, it must be rewritten and compiled as a

separate procedure for a different type, even though the steps and the logical

set of supporting operations are the same. In OOPS, one procedure defining

the general algorithm and order of calls upon the supporting operations will

do. When passed an array of integers, the integer supporting operations will

be called. Similarly, when passed an array of floating point numbers, the

floating point supporting operations will be called.

In an OOPS language, a given procedure or method can be compiled and put

aside in a library. Then at some time in the future, if a new data type is

defined which is "compatible" with the parameter type of the compiled

procedure, that procedur_ can be called with the new data type. Compatible in

this case means that the actual parameter carries with it the supporting

operations which the procedure or method will call upon. In a traditional

language only the data which can be passed to the supporting operations whose

references are already compiled into the body of the procedure can be

accepted. In an OOPS language, the replacement operations are carried with

the new data item.

Dynamic binding works in concert with inheritance in the following way.

An object may be defined in terms of a parent class definition giving its

general characteristics, and some specific definitions which are unique to the

object itself. The supporting operations may be defined by the parent class

definition, or uniquely for the object itself. If there is a supporting

operation defined at both levels, the object's unique definition overrides the

parent class definition.

and,

Dynamic binding and inheritance provide strong support for extendibility,

consequently, for building upon existing software. A different aspect of

-3- HO-O03

._ Copyright SofTech, Inc., 1988

m

dynamic binding supports a flexible approach to dealing generically with

different types of data. OOPS languages often make available a generic object

type from which all other object types are derived. The generic object type

is typically a consequence of the implementation, in which the generic object

information is carried around for all objects in support of dynamic binding.

The generic object type can be used as a holder for objects of any type

and thus can be used to create aggregates and collections of objects, both of

arbitrary type and mixed type. In certain situations this can be beneficial

when the purpose is to collect and organize, not to perform other

type-specific operations. It is analogous to what can be done externally on

private types in Ada, but the objects do not need to be of specific types.

Such loose collections and dynamic binding contribute to the polymorphi¢

character of OOPS, which is the ability of procedures to be general,

independent of type, or to act upon objects of differing types. This is not

necessarily in conflict with the concepts of strong typing, although

implementations often provide one to the exclusion of the other. OOPS systems

vary most significantly in terms of their treatment of data typing and type

checking constraints.

Relatin_ OOPS to Ada:

We are now in a position to explore how OOPS relates to Ada by

consideration of how one would implement the OOPS paradigms in the Ada
language. We will present this by stepping through the same three concepts of

OOPS discussed above and addressing them individually, an approach again drawn

from [Seidewitz]. In fact to facilitate comparison, we will use two examples

from that article. For each we will discuss in greater detail what

capabilities each concept implies, then discuss alternatives and approaches to

defining and translating an OOPS/Ada language.

Encapsulation: The first aspect of the system is simple encapsulation. This
is an aspect which Ada supports well on its own. To merge OOPS with Ada, in

fact, we must confine Ada's approach and adopt a notation which provides just

the functionality of an OOPS language. Doing this provides simplification for

the programmer, bringing the language closer to the specific form of

encapsulation appropriate for OOPS processing.

To provide encapsulation all that is necessary is a language construct to

combine the data and procedural elements. The construct should be treated,

however, as a proper data type of the language, in the sense of acting as a

template for the instantiation of multiple copies, allowing the definition of

aggregate collections and in allowing the data objects to be passed to

procedures as parameters.

There are two language features which come to mind when trying to

implement this in Ada: records, as are commonly used for merging OOPS with

languages like Pascal and C; and packages, which are unique to Ada and which

already implement the encapsulation of data and procedures. We will rule out

records in this case because there is no easy way to refer to executable units

without incurring the significant overhead associated with tasking. Packages,

however, while providing the desired encapsulation are not treated in the

language as data types.

-4-

Copyright SofTech, Inc., 1988

HO-O03

Thus no features of Ada map directly to the OOPS concept of

encapsulation, although packages come very close. In fact, one might note

that generic packages come even closer by providing the capability of

instantiating multiple copies, but this is not a proper treatment as a data

type; the other capabilities are missing.

The concept of encapsulation in OOPS is perhaps best represented in Ada

as a particular form of package specification, containing a record type
declaration which collects all of the data fields for the object and a listing

of procedures and functions which correspond to the methods of the object.

The record type can be used for creating instances of the data fields which

would be true data objects, while the procedures and functions can be defined

to provide operations on objects of this type.

If it is intended that the data fields be manipulated only by the methods

of the object, the record type can be declared as a private type, or a private

type can be used within a public record declaration to provide a mix of public

and private fields. For defining OOPS objects, the package specification

should contain nothing else. The package body should generally contain just

the bodies of the method procedures and functions, although local data

declarations would provide the functionality of class data fields offered in

some OOPS languages. Other variations which extend the usage of package

capabilities include the definition of class methods (procedures or functions

in the package specification which do not take an object as one parameter but

which may alter class data) and class initialization (package body).

It is not difficult to see that an OOPS/Ada notation can be defined,

which, with a relatively simple translator, can be used to generate this

particular form of Ada code. Figure one provides one example. Of course this

does not yet address inheritance or dynamic binding.

h

w

w

-- The _ollowing is a proposed OOPS/A_

-- declaration that can be translated to an Ada

-- equivalent.

Type Money is Float;

Class Finances is

Assets : Money :- 0.0;

Debt : Money :-0.0;

Initial

Function New Account

(Balance -- : in Money) Return Finances;

-- Allowable Transactions on a Finances Object.

Procedure Receive (Amount : in Money);

Procedure Spend (Amount : in Money);

-- Allowable Inquiries on a Finances Object.

Function Cash On Hand Return Money;

Function Tota_ _ceived Return Money;

Function TotaCSpent Return Money;

End Finances handler;

-- Here is true Ada code which does the same

-- thing :

Type Money is Float;

Package Finances Handler is

Type Finances is

Record

Assets : Money;

Debt : Money;

end Record;

Function New Account

(Balance : in Money) Return Finances;

Procedure Receive (obj : in out Finances;

Amount : in Money) ;

Procedure Spend (obj : in out Finances;

Amount : in Money) ;

Function Cash On Hand

(obj : in Finances)

Function Total Received

(obj : in FYnances)

Function Total_Spent

(obj : in Finances)

End Finances _Handler;

Figure I. Encapsulation in OOPS/Ada

Return Money;

Return Money;

Return Money;

-5-

Copyright SofTech, Inc., 1988

HO-003

w

w

Inheritance: Adding the feature of inheritance complicates the situation, but

not entirely beyond the scope of what Ada can do. At the programming level,

inheritance provides a shorthand for saying that the subclass has all of the

same fields and methods as the superclass, and then has additional or

overriding field and method definitions. _hile again, there is no exact

equivalent in Ada, a form of Ada usage can provide similar results.

The concept of inheritance requires two aspects of implementation, one

for the data fields and another for the methods. For the data fields,

assuming the approach recommended for encapsulation, the record type

declaration which collects all fields for the subclass can include a field

referencing the record type of the superclass. This requires an additional

level of referencing when accessing the superclass fields (for the subclass

record and the superclass record in addition to the field itself), but

provides the essential functionality.

For the methods, two approaches are possible. One is to know the

superclass package name and reference the superclass method directly, passing

it the superclass record contained within the subclass record. The second

approach is to define a procedure (or function, but we will refer to just

procedures for simplicity) within the subclass package, one for each of the

superclass methods, which will adcept the subclass record. The body of this

procedure will simply extract the superclass record and call the superclass

procedure with it. This latter approach has the advantage of treating a class
as a self contained definition and not requiring detailed knowledge of the

inheritance hierarchy, but introduces a bit of runtime inefficiency.

Given the above notation for supporting simple encapsulation, it is a

small extension to provide for inheritance. In this case the translator can

accept the notation of the second approach, yet implement the first approach

for handling methods, allowing for the treatment of the class as self

contained and yet avoiding the inefficiency. This requires the translator to

know the inheritance hierarchy and look up superclass package names. Figure

two provides an example of the notation and the equivalent Ada code.

Figures three and four provide the bodies of the respective

specifications and some code samples displaying how these definitions would be
used. In addition to the declarative unit for class definitions, the 00PS/Ada

notation introduces a type constructor which allows for declaring objects of a

certain class type, and a new operator ("_") which indicates object field

reference or method invocation.

-6-

Copyright SofTech, Inc., 1988

HOiO03

-- Example #2 of a class declaration using

-- inheritance.

Subclass of

Finances

Class Deductible Finances is

Deductible Debt : Money;

Replacement Initial

Function New Account

(Balance : in Money)

Return Deductible Finances;

Replacement

Procedure Spend

(Amount : in Money;

Deductible Amount : in Money);

Function Total Deduction Return Money;

End Deductible Finances;

-- Exanple #2 in true Ada

With Finances Handler;

Package Deductible Finances Handler is

Type Deductible Finances is

Record

Parent fields : Finances Handler.Finances;

Deductlble_Debt : Finances_Handler.Money;

end Record;

Function New account (Balance : in Money)

Return DedUctible Finances;

Procedure Spend

(obj : in out Deductible Finances;

Amount : in Money;

Deductible Amount : in Money);

Function Total Deduction

(obj : in D_ductible_Finances)

Return Money;

End Deductible_Finances_Handler;

Figure 2. Inheritance in OOPS/Ada

w

w

Class Body Deductible Finances is

Function New Account

(Balance : in Money)

Return Deductible Finances is

Begin
Return (^^New Account (Balance),

-- th_ superclass function

Deductible Debt -> 0.00);

end New_Account;

Procedure spend

(Amount : in Money;

Deductible Amount : in Money) is

Begin

Self^^Spend(Amount); -- the superclass's

^Deductible Debt :-

^Deductible_Debt + Deductible_Amount;

end Spend;

Function Total_Deduction Return Money is

Begin

Return ^Deductible Debt;

end Total_Deductions_

end Deductible__Finances_handler;

Figure 3.

Package Body Deductible Finances Handler is

Function New Account

(Balance : in Money)

Return Deductible Finances is

Begin

Return

(Finances Handler.New account (Balance),

Deductible Debt -> 0_00);

end New_Account_

Procedure Spend

(obj : in out Deductible_Finances;

Amount : in Money;

Deductible_Amount. : in Money) is

begin
Finances Handler. Spend

(obj .parent_Fields, Amount) ;

obj. Deductible Debt

:- ob j. DeduCt ible Debt +Deduct ible_Amount;

end Spend;

Function Total Deduction

(obj : in Deductible Finances)

Return Money is

begin

Return obj .Deductible_Debt ;

end Total__Deductions ;

end Deductible_FinancesHandler;

Class Bodies

'7-

Copyright SofTech, Inc., 1988

H0-003

Declare

Jane Doe : Object (Deductible Finance,

New Account (Balance -> 500_00));

End;

Procedure Transaction Set

(JaneDoe : Object _ Deductible_Finance)) is

begin

-- Buy a red dress for work purposes

Jane Doe^S_>end

(A_ount-> 69.95, Deductible_An_unt-> 69.95) ;

-- Do Lunch with an associate

jane__Doe^S_nd (_unount -> 3.50 + 1.00,
Deductible Amount -> 3.50 + 1.00);

-- Fettucini & Gauzlic._Bread,

-- Receive Pay Check

Jane Doe^Receive (Amount -> 500.00);

-- Calculate Taxes

Taxes :- 0.20 * (Jane Doe^Total Received

- Jan--e Doe^Total Deduction);

end Transaction Set;

Use Deductible Finances Handler;

Decla_re

Jane Doe : Deductible Finances

-- :- New Account (Balance -> 500.00);

End;

Procedure Transaction Set

(Jane_Doe : Deductible.Finances) £s

begin

-- Buy a red dress for work purposes

S_>end (obj -> Jane Doe,
2u_ount -> 69.95,

Deductible A_nount -> 69.95) ;

-- Do Lunch with an associate

S_>end (obj -> Jane Doe,
A_nount -> 3.50-'+ 1.00,

Deductible ;_nount -> 3.50 + 1.00);

-- Receive Pay Check

Finances Handler.Receive

(ob_ -> Jane Doe.Finances,

Amount -> 500._0);

-- Calculate Taxes

Taxes :-

0.20 * (Finances Handler.Total Received

(obj -> _ane Doe.FinanCes)

-Deductible Finances Han_ler.Total Deduction

--(obj "> _ane_Doe)) ; --

end Transaction_Set;

Figure 4. Class Use in OOPS/Ada

Dynamic Binding: The last feature to add is that of dynamic binding.

Unfortunately, dynamic binding is a much more fundamental characteristic of a

language than the two previous features and thus is more difficult to

implement as a translation into existing features of the Ada language.

For accessing supporting operations, dynamic binding requires that a set

of supporting operations be associated with each object and that a mechanism

be implemented to call these supporting operations. Ada provides no direct

way within the language to call one of a set of procedures selected at runtime

(i.e. arrays of procedures or procedure parameters). The options available

are to implement a complex mechanism involving intermediate procedures and

case statements, or to use a combination of tasking features. In either case

the resulting overhead is burdensome.

In Ada, the closest approximation to such dynamic operations binding is

with Generics. We have already seen how generics fail to properly support the

implementation of encapsulation. Their use in this case is quite a bit

different. A more abstract perspective of dynamic binding indicates that all

that is required is to be able to handle a new data type declaration with_a

previously defined set of operations. The Generic mechanism of Ada supports

this by allowing the declaration of a new set of operations based on a

previously compiled generic template. While the syntax implies that a whole

new set of operations is befng created, and most implementations actually

follow this model, for the restricted usage of generics required in this case

the mechanism of dynamic binding could be the underlying implementation.

-8- HO-O03

_ Copyright SofTech, Inc., 1988

Figure 5 outlines how this would work if we extended the example of
Figures 1-4 to include a new class (New Finances) which provides the same
external specification as the class finances. In an OOPSlanguage an object
of the new type could be passed to procedure transaction set without

complications. Transaction set calls upon a set of procedures provided by the

actual parameter passed. -Dynamic Binding requires only that the same set of

supporting operations be provided.

In Ads, transaction set would have to be compiled as a generic with the

procedures provided by the Finances class as generic procedure parameters. In

this way transaction set could be instantiated for any set of actual

procedures which collectively implement a given class. While this approach is

sufficiently general to handle the intent of dynamic binding it quickly

becomes quite cumbersome, with both excessive compile-time and run-time

inefficiencies with most if not all implementations of Ada.

In Figure 5 the OOPS/Ada procedure Transaction Set is redefined as an Ada

generic procedure based on its use of a class deri_ed object type as a formal

parameter. This is followed by the OOPS/Ada code and its Ada equivalent to

introduce and work with a new class definition.

__1

class New Finances is

-- same protocol as Clams Deductible Finances

-- (with inherited components)

End New Finances;

Declare

JohnDoe : Object (New Financas);

Begin

Transection Set (JohnDoe);

_-W End;

Generic

Type Deductible_Finances is limited private

With Procedure Spend ,..

With Procedure Receive ...

With Function Total Received ,.,

With Function Total_Spent ..,

Procedure Transaction Sat

(John_Doe : in Deductible Finances} is

Begin

-- same body as before

End Transaction_Set;

Package New Finances Handler is

Type New Finances is Record...

-- llke speci_icatlon for Deductible Finances

-- Handler with inherited components

End New_Finances_handler;

New_Finances_Transaction_Set

is new transaction Set

(Deductible Finances -)

New_Financeihandler.NewFinances

...);

Declare

John_Doe : New_financas_handler.New_rlnancas:

Begin

Nmw Finances Trsnsactlon set (3ohn Doe);

End;

Figure 5. Handling New Types

ORIGINAL PAGE IS
OF POOR QUALITY

-9-

Copyrizht SofTech, Inc., 1988

H0-003

Applicability:

If one steps back from these implementation details and asks when is OOPS

most applicable for system development in differing application domains, a

different perspective emerges. While throughout this report we have been

considering what distinguishes OOPS from other approaches, we now consider how

these differences affect the applicability of the approach.

It is important to recognize that while the "object oriented" methods may

be applied throughout the life-cycle of software development, OOPS refers

specifically to a class of programming languages. From this perspective the

issues of applicability of OOPS are issues of software development, after much

of the design has been done, i.e., the choice of OOPS vs. some more

traditional language is mostly a coding decision. At this stage in

development the concerns are, for example, of code reuse, reliability, test

and integration effort and efficiency.

From the earlier sections of this report it is clear that while there are

differences in the fundamental capabilities of different 00PS languages, the

OOPS approach in general addresses the modularity and interconnection of

units, not the fundamental data types and operations. Thus while one can talk

more specifically about different OOPS languages, in general only issues of

modularity can be discussed.

OOPS has as its great appeal the potential for code reuse. As was

illustrated above with the sort example, a given algorithm once coded has a

far wider potential for reuse. Any subsequently defined data type can be

passed in, so long as it has the necessary supporting operations defined,

without having to modify the algorithm or recompile its code.

Note however, that this potential for reuse has its savings in the

elimination of coding time but does not eliminate the need for detailed unit

testing of the module in the particular environment of its reuse. With

traditional approaches to testing, once a unit has been developed and has been

through unit testing, it is assumed correct for most any use. Unit and

integration testing provide a bottom-up and top-down assessment of

correctness, respectfully, which complement each other. While top-down

testing provides assurance that the basic system level performance is correct,

it cannot hope to test every path or circumstance for correctness. Unit

testing, on the other hand, provides a more fundamental check on the

correctness of a given unit, under a variety of conditions in which it might

be called, providing a better check on the unusual circumstances, but not on

the overall correctness of the system.

OOPS changes the nature of bottom-up unit testing. In more traditional

languages, when a unit is tested, the supporting operations which the unit

calls upon are part of that testing. They are not changed by a different set

of actual parameters. For the same assurance of correctness, OOPS requires a

unit-level testing for each set of actual parameter types, or more likely, a

unit-level testing for each application of the unit.

Consider the case of a sort routine written in OOPS. An object, which

represents a uniform collection of data and has a comparison operation defined

for that data, may be passed in for sorting. However, if the comparison

-i0- H0-O03

_ Copyright SofTech, Inc., 1988

operation itself is inconsistent or in any way fails to provide a single
correct ordering of the data i'tems, the sort algorithm may not even complete,
let alone perform the sort correctly. This is an example of a functional
dependency which is difficult to impossible to check for. A clear
understanding and careful documentation is needed in addition to careful
testing in each application.

As for efficiency, there are method invocation implementation approaches
which perform muchof the required processing pre-runtime, leaving only a few
additional instructions above that required for a more traditional procedure
call in most cases. Thus the issue in efficiency need not focus on the
overhead of method invocation. _ A more subtle issue has to do with the
difficulty of compiler optimizations. The dynamic binding of 00PS certainly
precludes the possibility of inline code generation and optimizations which
depend upon the good behavior of called procedures. For these reasons, 00PS
may not be the first choice for low-level system code development.

The fact that 00PS provides alternatives in the organization and
modularity of a system suggests that OOPS is most valuable at the higher
levels of coding within a system, where the supporting operations are likely
to be higher abstractions themselves and where the more general abstractions
are more likely to be called from differing places in the system. At the
higher levels in system, it is more likely that an operation will be inherited
in the definition of a necessary refinement. At the lower levels of a system,
the inability to optimize and the lack of any consideration for system level
details are factors against the adoption of 00PS.

Other than these considerations there are few relevant aspects of OOPS,
which are implementation independent, which would argue for or against its
use. Of course, in a real-time application one would be concerned for the
real-time support aspects of a given implementation, and there are many if not
most implementations of 00PS which would be inappropriate. These
implementations fail, however, because of factors which are not inherent in
the 00PSconcept itself.

L
w

Summary

In pursuing this project we have covered a lot of ground, much of which

is only glossed over in this report. The list of references includes many

important works upon which most of this paper is based. From these we have

reached a certain understanding of what 00PS is and what the elements are upon

which it is based.

Two areas remain for further consideration in the adoption of 00PS

paradigms. The first has already been introduced, that of testing and

reliability. This is an issue facing software reuse in any form, but it is of

particular concern in the mechanisms of generics for Ada and dynamic binding

for 00PS. The second concern has not been addressed in this report, but will

need to be addressed before 00PS can be fully integrated into system

development. This is how 00PS should interact with concurrency and

multi-tasking.

-ll-

Copyright SofTech, Inc., 1988

HO-O03

In consideration of how Ada compareswith 00PScapabilities we have shown
that Ada provides muchof what is needed, although only through preprocessing
a notational extension would these capabilities be directly recognized in the
language. The disadvantage of Ada is that while generics provide muchof what
is provided by dynamic binding, generics are a feature which must be added to
other features, unlike dynamic binding which is built in and automatic. In
addition, the typical implementation of generics results not in code reuse,
but rather in a form of automated code generation. This is one more instance
of requirements for flexible and sophisticated implementation support £or
generics in Ada.

In general, there is much to merit the object oriented approach to both
design and code development. Like other high-level approaches to coding,
object orientation can imply paradigms for the use of existing Ada features.
It is not uncommonfor such approaches to require cooperation of the compiler
and other support software to provide efficient implementation. OOPSis an
important approach to programming, one that deserves the further development
in terms of the above issues and in terms of its support in Ada.

L

-12-

Copyright SofTech, Inc., 1988

HO-003

[Seidewitz]

[Minsky]

[Meyer]

[Snyder]

[Cox]

[Schmucker]

References

Seidewitz, Ed. "Object-Oriented Programming in Smalltalk and

Ada", OOPSLA '87.

Minsky, Marvin. "A Framework for Representing Knowledge" in

The PsTcholog 7 of Computer Vision, edited by Patrick Henry

Winston, McGraw-Hill, 1975.

Meyer, Bertrand. "Genericity Versus Inheritance", OOPSLA '86

Snyder, Alan. "Encapsulation and Inheritance in Object

Oriented Programming Languages", OOPSLA '86.

Cox, Brad. Object Oriented Programming - An Evolutionar 7

Approach, Addison Wesley, 1986.

Schmucker, Kurt J. Object-Oriented Programming for the

Macintosh, Hyden, 1986.

w

w

_7

-13-

Copyright SofTech, Inc., 1988

HO-O03

w

Addendum I

On Data Typing and Operations Bindings

In untyped languages, the definition of data and operations are kept

separate from each other, in the sense that operations are defined in terms

which are independent of the actual interpretation of the data. Thus, for

example, a floating point divide may be performed on any double-word value

whether that value was originally assigned as a double-length integer, fixed

point value, character string or in fact as a floating point number. A typed

language adds the notion that values have associated with them an

interpretation which defines their meaning. The interpretation can be

generalized as the data's type. With this definition of data type is

associated a certain set of operations which make sense for that data type. A

strongly typed language imposes restrictions so that only proper operations

are performed on values, based on required declarations for all data objects

which specify their type.

Where dynamic binding makes the most significant difference is in the

definition of new operations, i.e., procedures or methods, which accept

parameters. Most definitions of new operations make some significant

assumptions about what operations may be carried out on the parameters. In a

strongly-typed language, the type of the parameter is declared in the formal

declaration of the operation (i.e., the operation's external interface). Thus

only actual parameters of the specified type are permitted. In this case the

declaration of the parameter's type formally defines the set of allowed

operations which the body of the new operation may call upon. Whether or not

the parameter types are formally defined, however, a new operation definition

is a composition of other operations, in a certain order, and with iteration

and branching, etc. to arrive at its intended processing conclusion.

In a "traditional" language (e.g. FORTRAN, Pascal, C), the body of a new

operation contains references to supporting operations which are statically

bound when the definition is compiled. The binding is either to built-in

operations of the underlying machine, or to a specific subroutine of

instructions for which an address can be determined prior to execution. So

long as the actual parameters passed at runtime contain the right data type

(an aspect guaranteed by a strongly type language) the operation can be

assumed to generate the correct result.

SofTech A-I H0-003

, Copyright SofTech, Inc., 1988

Addendum II

v

A Program Derived from Example 3

Class Collection (Max Size : positive) is

-- Max Size is a discriminant for this class

-- implements a loose (mixed types) collection

-- of objects which maintains order. Access

-- is by index based on insertion order

Function Add (item : in Object)

Return Natural;

Procedure Replace(index: in Positive,

item : in Object);

Function At (index: in Positive)

Return Object;

Function Size Return Natural;

Private

current size : ... ;

Data : ... ;

End Collection;

With Class Collection;

Class Sample_Set (Max_Size : Positive) is

Procedure Set

(new data : in Object (Collection));

FunctiOn Sample Return Object;

Function Sanples(n : in Natural)

Return Object (Collection);

Empty : Exception;

Private

Data : Object (Collection (Max_Size));

Re_aining_Size : Natural;

End Sample_Set;

of [Seidewitz] in OOPS/Ada and Ada

-- Code which uses San_ple_Set :

Subclass of

Collection

Class Card Deck is

Procedure Renew;

Function Deal Return Card;

Procedure Return (returnee : card);

Procedure Shuffle;

Private

Type suit is (spade, heart, diamond, club);

Type face is (ace, king, queen, jack,

cl0, c9, c8, c7, c6, c5, c4, c3, c2);

Type card is

record

a : suit;

b : face;

end record;

Deck : object (collection (max Size -> 52));

-- filled with cards in procedure renew

top,

bottom: deck index;

End Card Deck;

With Class Collection, Sample_Set;

Class Body CardDeck is

Procedure renew is

temp : object (collection (max_size-> 52);

begin

for i in suit loop

for j in face loop

ten_^add (object (card' (i, j))) ;

end loop;

end loop;

^deck :- temp;

Atop :- I;

^bottom:- 52;

end renew;

w

With Random;

Class Body Sample_Set is

Function Sample Return Object is

Item : Object;

Index : Natural;

Begin

If ^Remaining_Size - 0 Then

Raise Empty;

End if;

Index :- Natural ((Random.Value

* ^Remaining_Size) + I);

Item :- data^at(Index);

Data^Replace

(Index, Data^At (^Remaining Size));

^Remaining_Size :- ^Remaining Size - i;

Return Item;

End Sanple;

End Sanlple Set;

SofTech A-II

Procedure Shuffle is

temp : Object (Sample_Set(max_size -> 52));

Begin

temp^Set (^deck);

^deck :- temp^Samples (n -> 52);

End Shuffle;

End Card_Deck;

HO-O03

Copyright SofTech, Inc., 1988

